Borexino, CTF and the CNGS neutrino beam

Laura Perasso - I.N.F.N. Milano

Content:

- I. The Borexino and CTF Muon Identification Systems:
 - the physics case
 - descriptions, efficiencies
- II. Preliminary rate values for the detected CNGS beam induced muons
- III. Conclusions

in the detectors

The CNGS v_{μ} beam can be monitored detecting the **muons** produced by the CC and NC interactions

in the rocks in front of the detectors

with muon identification systems

Borexino and **CTF**:

- have very good muon identification systems => hight det. eff.
- are huge (BX) / big (CTF) => high rates
- CTF is currently running and taking data
- are in Hall-C just in front of the Opera detector => coincidences are possible

Hall C side and top view :

Laura Perasso

Why BX has a Muon Identification system: The Physics case

The primary purpose of the Borexino Collaboration is the measurement of the solar $v_e \square$ from ⁷Be at the 5% level through the el. scattering $v_e + e^- \rightarrow v_e + e^$ for $E_v \in (0.250 \div 0.800)$ MeV ["Neutrino Window (vW)"]

Why:

- ~ 10% of the solar v produced are 862-keV ⁷Be v_e
- the 98% of the total v_e solar flux has $E_v < 1$ MeV
- **so far no experiment** has directly observed *in real time* these neutrinos

Other goals at these low energies are:

- detect Solar pep and CNO neutrino fluxes
- explore the vacuum-matter transition region
- detect geoneutrinos and supernovae neutrinos
- measure the neutrino magnetic moment

•

In order to make these very difficult measurements

=> we MUST reduce the bkgnd in the vW - $(0.250 \div 0.800)$ MeV - at not previously reached values at these dimensions

Cosmic muon crossing the detectors

Given the ~ 10^4 muons/day which hit Borexino, in order to have 1 muon ev/day

=> Borexino must have a *muon identification* (or muon veto) *system* to reduce the leak rate of muons into the ⁷Be v window below $10^{-4} => \varepsilon$ better than 0.9999

=> a muon ID system is needed

□ Gamma rays and Radionuclides produced by muons in the scintillator

gamma rays from capture of cosmogenic *neutrons* produced by cosmic *muons* primarily in hadronic showers

- *radioactive nuclides* : The *muon*-induced nuclear cascade also produces radioactive nuclides in the Scintillator

=>> These bkgnd can be tagged by excluding pulses preceded by muon signal within a time window

=> this efficiency depends on the rad. nucl. lifetime

=> a muon ID system is needed

The Borexino μID Systems

It is composed of 2 independent subsystems, whose combined efficiency adds up to give the aimed rejection figure in case of prod. of prompt μ in the vW:

- 1) The Outer Muon System
- 2) The Inner Muon System

1) The Outer Muon System :

=> to detect the Cherenkov radiation from muon tracks in the shielding HP water

(geom. optimized for perpendicular tracks ID and reco !)

For μ passing between the SSSphere and the Water Tank (pure Water) => Cherenkov effect

$$\frac{d^2 N_{\gamma}}{dx \, d\lambda} = \frac{2\pi\alpha z^2}{\lambda^2} \left[1 - \frac{1}{\beta^2 n^2(\lambda)} \right]$$

Integrating taking into account the PM QE and a "*practical factor*" ($Q.E. \times p.f. = 0.12$)

$$=>$$
 # detectable *pe* in water ~ 32 *pe/cm*

In the OD: - the min. $\Delta x = 200$ cm - the OD PMs coverage is ~ 1.1% => ~ 70 pe/ev but with addition of the Tyvek surface we=>> expect ~150 pe/ev

Muon ID is path dependent $\sim 98\%$

Laura Perasso

2) The Inner Muon System:

374 (out of the 2212 total) 8" ETL-9351 PMs *do not have* the Al light concentrators (\emptyset =20cm)

=> their acceptance angle is wider than the other ones optimized to view the Inner Vessel.

These 374 *no-cone PMs* will more likely detect particle not crossing the IV

Laura Perasso

a) For μ passing across the PC + DMP buffer => Cherenkov

Cherenkov => # detectable *pe* in PC ~ 41 *pe/cm*

In the ID:

the min. Δx = 260 cm X 2
the ID PMs coverage is ~ 2.4%
⇒~ 500 pe/ev
(we assume here negligible scintillation)

Muon ID $\sim 99~\%$

R= (Σ in the 374 PMs without light cone at the first pe) / Σ (of all the 2212 PMs)

[L.Oberauer]

Laura Perasso

b) For μ passing across the PC+PPO IV =>scintillation

of photon emitted from PC+PPO scintillation = 12000 photons /MeV * 0.87 g/cm³ * 1.8 MeV/g/cm² => 1.9 10⁴ photons/cm => ~ 650 pe/cm detected

=>> for ~ 30 cm path inside the scintillator => the electronics will be saturated

Muon ID = 100%

The CTF μID System

8+8 PMs on the floor in two concentric rings at 4.9 m and 2.4 m

100 PMT around a ~3 m radius open structure

Cherenkov effect + scintillation when going through the 5.5m radius scint. IV

Muon detection efficiency depends on the path $\sim 100\%$

¹¹C bkgnd for pep and CNO neutrinos in Borexino

fluxes and oscill parameters as a pp measurement [Bahcall &

Pena-Garay, hep-ph/0305159]

- investigates the matter-vacuum trans. region for solar ν oscill.
- Difficulty => Very low rates:

pep = 2.1 CNO= 3.5 [ev/day in 100t]

Needed very low:

- •Internal ²³⁸U, ²³²Th and Ext. bkgnds
- •cosmogenic background

(ex: ¹¹C; $t_{1/2} = 21 \text{ min}$; 15 ev/day in 100 t)

Laura Perasso

=> a muon veto ID is needed

The <u>CTF μ ID System</u> has recently been proven to work successfully even for the tagging of the long (21 min) ¹¹C cosmogenic bkgnd [hep-ex/0601035]

¹¹C Trigger = (*muon ID*) x n x (¹¹C decay)
¹¹C -> ¹¹Be + e⁺ + v_e

$$E_{decay} \in (1.02 \div 1.98) \text{ MeV}$$

Laura Perasso

Preliminary rate values for the CNGS induced muons

!! Warning !!

<u>!! no MC done so far !!!</u>

Laura Perasso

How many CC + NC μ events do we have in the detectors ??

These CNGS event rates in Borexino and CTF have been calculated assuming:

•Nominal CNGS beam intensity = $4.5 \ 10^{19} \ pot/year$ •CC interaction probability = $4.96 \ 10^{-17} \ CC/pot/kton \ mass$ for $E_v < 30 \ GeV$ [P.Sala]

•One year = $200 \ days$

For: mass(Borexino) = 3.327 ktons mass(CTF) = 0.950 ktons $\Rightarrow N_{CCint}(Borexino) = 7426v_{\mu} \text{ cm}^{-2}/\text{year} \Rightarrow 37 CC ev/day + 11 NC ev/day$ ~ 48 ev/day in Borexino

$$\Rightarrow N_{CCint}(CTF) = 2120 v_{\mu} \text{ cm}^{-2}/\text{year} \Rightarrow 11 CC ev/day + 3 NC ev/day \sim 14 ev/day in CTF$$

Laura Perasso

How many v_{μ} induced muon from the rocks do we have ??

Scaling the LVD results [M.Aglietta et al., hep-ex/0304018 v1 18 april 2003], with the usual assumptions:

33600 µ hitting the LVD "mother volume"/year

⇒33600 / (LVD sup) X (Bx sup) = 33600 / (13.75m X 12m) X 266 m²= 54167 μ /year ⇒271 μ /day in Borexino

⇒33600 / (LVD sup) X (CTF sup) = 33600 / (13.75m X 12m) X 110m²= 22400 μ /year ⇒112 μ /day in CTF

Laura Perasso

The total CNGS v_{μ} induced muons (from CC or NC in the detector itself or in the upstream rocks) calculated rates are:

48(CC+NC) + 271 (from rocks) = 319 μ/day cross Borexino

14(CC+NC)+ 112 (rocks) = **126 μ/day cross CTF**

How do they compare to our cosmic muon bkgnd ??

How many are detected, taking into account the detector efficiencies ??

<u>CNGS muons vs. cosmic muons</u>

Considering the 10.5 μ s spill length with a 50ms interspill gap we have a cosmic μ flux in coincidence with the CERN spill :

 $\sim 2 ev / day$ in Borexino

~ 0.5 ev /day in CTF

Total CNGS v_{μ} induced muons : • 319 μ/day cross Borexino = 3% of the cosmics • 126 μ/day cross CTF = 4% of the cosmics

BX and CTF must use the beam spill to identify the CERN μ

Laura Perasso

Final rates taking into account the detector geom efficiencies

In Borexino :

muons generated		Det eff.	Final rate[ev/day]
inside the det.	48	~98%*	47
in the rocks	271	~99%	268
Total rate	319		315
			[ev/day]
Cosmic muon rate bk			2 ev/day

In	CTF:

muons generated		Det eff.	Final rate [ev/day]
inside the det.	14	~50%*	7
in the rocks	112	~98%	110
Total rate	126		117 [ev/day]
Cosmic muon rate bk			0.5 ev/day

Laura Perasso

Waiting for the beam - LNGS 22/06/2006

* dep. on the trigger thresh

We can have BX-CTF-Opera coincidences

Laura Perasso

How many $v_{\underline{\mu}}$ induced muon from the rocks do we detect both in Opera and in Borexino and CTF ??

Scaling the LVD results [M.Aglietta et al., hep-ex/0304018 v1 18 april 2003], with the usual assumptions:

33600 μ hitting the LVD "mother volume"/year

 $\Rightarrow 33600 / (LVD sup) X (Bx sup) = 33600 / (13.75m X 12m) X (6.7 X 6.7) m² = 9141 \mu/year 45 \mu/day$

Conclusions

• Can Borexino/CTF monitor the CNGS v beam ?? Yes ! In LNGS - HallC we will have :

- 315 µ/day in Borexino
- 117 μ/day in CTF

Corresponding to a 3% stat. error in: **3.5 days for Borexino**

9.5 days for CTF

What we have to do ??

These are very preliminary results

=> MC- calculate all the acceptances of the detectors for these *horizontal* muons

• What is needed for monitoring ??

Spill timing information

•Can Bx do something else ??

Yes !! Beam burst structure, Calibrations, Track algorithm checks, ?? Some physics?? σ_{cc} ???

Laura Perasso