Sources of background and their suppression illustrated by experiments on neutrino properties at LNGS

> Gerd Heusser Max–Planck–Institut für Kernphysik Heidelberg

- o neutrino properties via ${\buildrel \bullet}$ v's and $\beta\beta$ experiments
- o sources of background
- o germanium spectroscopy
- o proportional counter of Davis type
- o radioactive rare gases in BOREXINO
- o from Heidelberg-Moscow to GERDA
- o conclusion and future development

thanks to the colleagues of the Collaborations: GALLEX/GNO, HEIDELBERG MOSCOW, BOREXINO, GERDA special thanks to Matthias Laubenstein, LNGS

the elementary particles of the Standard Model of particle physics

EXPERIMENT	TARGET	REACTION	SIGNAL
SUPERKAMIOKANDE Cerenkov	H ₂ O 22ka	$v_e + e^- \rightarrow v_e + e^-$	43 directional
		$v_{\rm X}$ + e ⁻ $\rightarrow v_{\rm X}$ + e ⁻	6 "
SNO Cerenkov	D ₂ O	$v_e + e^- \rightarrow v_e + e^-$	2 directional
	1.00	$v_{\rm X} + e^- \rightarrow v_{\rm X} + e^-$	0.3 directional
	CC NC	$\begin{array}{c} u_{\rm c} + {\rm d} \rightarrow {\rm e}^- + {\rm p} + {\rm p} \\ u_{\rm X} + {\rm d} \rightarrow u_{\rm X} + {\rm p} + {\rm n} \\ {\rm n} + {\rm Cl} \rightarrow {\rm Cl} + \gamma \end{array}$	18 8
BOREXINO liq. scintillator	TMB/PC/p-XYLENE 0.1kt	$v_{\rm e} + e^- \rightarrow v_{\rm e} + e^-$	50 (0.25-0.8MeV)
		$u_{\rm X} + e^- \rightarrow v_{\rm X} + e^-$	10 "
	CC	$u_e + "B \rightarrow e^- + "C$ $"C \rightarrow e^- + "B$	0.65
0.6			
va	cuum like- 1	NSW-oscillati	on
0.5 -			
obability		T	
u.4 –			

neutrino energy (MeV)

----- MSW-LMA for ⁷Be MSW-LMA for ⁸B

Borexino
 pp solar neutrinos

pp sc
 SNO

0.2

0.0

0.1

G. H. 🛶 , LNGS Seminar, 25. 5. 2010

10

2 flavor

All solar

 $\Delta m_{21}^2 = 7.59 \substack{+0.20 \\ -0.21} \times 10^{-5} \text{ eV}^2$

m_{ee} dependance on absolute mass scale and Θ_{13}

background components in Ge spectrometry

G. H. -----, LNGS Seminar, 25. 5. 2010

disequilibrium in natural decay chains

sample		primordial radionuclides [mBq/kg] and ratios									
	^{234m} Pa	²²⁶ Ra	^{234m} Pa/ ²²⁶ Ra	²²⁸ Th	²²⁸ Ra	²²⁸ Th/ ²²⁸ Ra					
old ship steel	5.7ª±1.4	0.15±0.02	38±11	0.46±0.07	0.47 <u>+</u> 0.05	0.98±0.18					
<i>G</i> 5	54 ^c ±16	1.0±0.6	54±36	1.5±0.2	1.0±0.5	1.5±0.77					
GALLEX steel	16±4	0.19±0.05	84 <u>+</u> 31	≤ 0.50, ≤ 0.021 *	≤ 0.15						

* including the 2.615 MeV line

....Raymond Davis Jr. ...I.J.Nucl.Med. Biol. 3 (1976), fast neutron dose requirement for...

Estimation of skeletal calcium in humans by exhaled ³⁷Ar measurement

FIG. 1. The apparatus for collection and storage of respiratory exhaled gases.

GALLEX/GNO-Sonnenneutrino-Detektor

Source	Activity or f at the positi proportiona	Activity or flux at the position of the proportional counter $3 \times 10^{-8} \text{ cm}^{-2} \text{ s}^{-1}$ $< 10^{-6} \text{ cm}^{-2} \text{ s}^{-1}$ $< 10^{-6} \text{ cm}^{-2} \text{ s}^{-1}$ $< 0.5 \text{ Bq m}^{-3}$ < 2, 1, 1 mBq/kg < 0.04 mBq/kg < 1.2 mBq/kg < 7 mBq/kg < 3 mBq/kg < 0.3 mBq/kg < 0.4 mBq/kg < 0.4 mBq/kg $< 0.12 \text{ Bq m}^{-3}$		Count rate > 0.5 keV [cpd]	
External sources Muons Neutrons Gamma rays Rn + progenies K, Th, U in copper of the shieldi Internal sources K in quartz Th in quartz U in quartz ⁶⁰ Co in iron cathode ²²⁶ Ra in iron cathode U in iron cathode U in iron cathode Tritium in counting gas ⁸⁵ Kr in counting gas	$3 \times 10^{-8} \text{ cm}$ $< 10^{-6} \text{ cm}$ $< 10^{-6} \text{ cm}$ $< 0.5 \text{ Bq m}$ $< 0.5 \text{ Bq m}$ $< 2, 1, 1 \text{ mBq/k}$ $< 0.04 \text{ mBq/k}$ $< 0.01 \text{ mBq}$ $< 1.2 \text{ mBq/k}$ $< 0.06 \text{ mBq/k}$ $< 0.3 \text{ mBq/k}$ $< 0.4 \text{ mBq/}$ $< 0.4 \text{ mBq/}$ $< 0.12 \text{ Bq m}$			All GNO r recorded the first !	uns (58) during 50 days
Background rates for counters ((8 with Fe catho With pulse shape discrimina L-window fast 0 040	used in GNO (0.5 keV ode and 12 with Si cathon ation [counts/d] K-window fast 0 025	E ≤ 15 ke de) some intr assem	e contamina roduced du bly (glassb	ation ring lowing)	-

composition of background for Fe cathode counters in Pb/Cu shield at LNGS

Result of GALLEX/GNO and SAGE gallium solar neutrino experiments

Commitment of Heidelberg:

- $^{\circ}$ develop methods to detect noble gas radionuclides and ^{226}Ra (via $^{222}Rn)$ at the μBq level
- screen (also y counting) relevant materials and subsystems at that level
 provide nitrogen for scintillator purification at the required level

²²²Rn (²²⁶Ra) assay with proportional counting

Ray Davis Jr. type miniture counter

efficiency for internal counting (> 15 keV): 148 % background: 0.2 - 2 counts per day \Rightarrow about 30 μ Bq ²²²Rn easily detectable (monitoring)

Extract Rn from large quatities of water, nitrogen and

as an emanation signal of subsystems of BOREXINO

Reached sensitivities:

 $H_2O: 1 \text{ mBq Ra/m}^3$ 0.1 mBq/Rn/m³

nitrogen: 0.5 µBq/m³

surface $0.5 \,\mu Bq/m^2$ emanation

Emanation measurements under dry and wet conditions

²²⁶Ra contamination of steel and nylon foil measured by ²²²Rn emanation

sample	surface concentration	bulk concentration	
	$(\mu Bq/m^2)$	$(\mu Bq/kg)$	
steel foil (untreated)	10 ± 1		
(71 m^2)		$640 \pm 210^{\mathrm{a}}$	
after rinsing with H ₂ O	5±1		
	0.1.1		_
(280 m^2)	8±1		
Sniamid/Capron foil	3±1	100 ± 20^{b}	
$(0.1 \text{ mm}, 208 \text{ m}^2)$			Grzegorz
Sniamid nylon	≤ 0.8	≤ 21 ^b	Zusel
$(0.125 \text{ mm}, 130 \text{ m}^2)$			

^{**a**} measured by Ge γ spectroscopy (expected emanation rate by α -recoil: 0.2 μ Bq/m²) ^{**b**} measured via ²²²Rn emanation under wet condition (enhanced permeability)

• corresponds to ~ 8 ppt U-equivalent - but ~ 2.5 ppt U measured with ICP-MS \Longrightarrow

secular disequilibrium between U and Ra

activity in nitrogen [µBq/kg]

nitrogen sample	$^{39}Ar^{a)}$	$^{85}Kr^{a)}$	$^{222}Rn^{b)}$
regular purity	12	41	40
charcoal purified	12	31	0.4
Charcoal purified liq.extr.			< 0.3
Linde Worms (7.0)	0.017	0.07	1
SOL Mantua (7.0)	0.006	0.04	
Westfalen Hörstel (6.0)	0.0006	0.06	
required	0.4	0.14	6
air	$\sim 1.1 \text{x} 10^4$	$\sim 1.2 \times 10^{6}$	$\sim 1 \times 10^7$

^{a)} measured by rare-gas MS; 1 ppm Ar = $1.19 \mu Bq/kg$; 1 ppt Kr = $1.03 \mu Bq/kg$

^{b)} measured by concentration and proportional counting

Acknowledgements for Ra/Rn, Ar and Kr measurements:

LNGS: M. Balata, L. Ioanucci, M. Laubenstein, C. Salvo

Heidelberg: C. Buck, B. Freudiger, H. Simgen, W. Rau, Y. Zakharov

Krakow: G. Zuzel, M.Wojcik

Heidelberg-Moscow double beta decay experiment

5 enriched Germanium diodes (86% in ⁷⁶Ge, normal 7.44%)

Shield made of:

20 cm regular Pb 20 cm Pb with 0.2 ²¹⁰Pb Bq/kg Pb 10 cm borated PE Rn protection casing cosmic veto

Result of Heidelberg-Moscow experiment

1990-2000 Gran Sasso Underground Laboratory

total mass = 10,9 kg FWHM = 3,85 keV $N_{Bkg} = \begin{bmatrix} 0,19 \text{ counts y}^{-1} \text{ kg}^{-1} \text{ keV}^{-1} \\ 0,06 \text{ counts y}^{-1} \text{ kg}^{-1} \text{ keV}^{-1} \text{ (SSE)} \end{bmatrix}$ $T_{1/2}^{0\nu} > 1.9 \ 10^{25} \text{ y} (90\% \text{ C.L.})$ $< m_{v} > < 0.3 - 1.0 \text{ eV}$

Klapdor-Kleingrothaus et al. Eur Phys. J. 12 (2001) 147

Evidence!!??

Cu (NOSV) measurement with GeMPI

Cosmogenic* and primordial concentrations in Cu							
radionuclide	halflife	activity [µBq/kg]					
cosmogenic		exposed	unexposed				
⁵⁶ Co	77.31 d	230 ± 30					
⁵⁷ Co	271.83 d	1800 ± 400					
⁵⁸ Co	70.86 d	1650 ± 90					
⁶⁰ Co	5.27 y	2100 ± 190	(< 10)				
⁵⁴ Mn	312.15 d	215 ± 21					
⁵⁹ Fe	44.5 d	455 ± 120					
⁴⁶ Sc	83.79 y	53 ± 18					
⁴⁸ V	15.97 d	110 ± 37					
primordial							
226 Ra (U)	1600 y	< 35	< 16				
²²⁸ Th (Th)	1.91 y	< 20	< 19				
⁴⁰ K	$1.277 \times 10^9 \text{ y}$	< 120	< 88				

activity = PR/2.1 \times (1-e^{-h†})

⇒ ≤ 37 days of exposure

* saturation activity scaled after exposure at LNGS surface for 270 d

G. H. -----, LNGS Seminar, 25. 5. 2010

Measurement of lead with GeMPI

lead sample	weight	time	specific activity [µBq/kg]				
	[kg]	[d]	²²⁶ Ra	²²⁸ Th	⁴⁰ K	²⁰⁷ Bi	²¹⁰ Pb
DowRun	144.6	101.7	< 29	< 22	440 ± 140	98 ± 24	$(2.7 \pm 0.4) \ge 10^7$
Boliden	144.3	75.0	< 46	< 31	460 ± 170	< 13	$(2.3 \pm 0.4) \ge 10^7$
roman	22.1	37.2	< 45	< 72	< 270	< 19	$< 1.3 \ge 10^{6}$
	bolometri	2 (1998) 163	$< 4 \text{ x } 10^3$				

contamination of Cu [µBq/kg] simulated for HDM detectors and measured

	²²⁶ Ra (U)	²²⁸ Th (Th)	⁴⁰ K	
Cryostat of ANG1	168 ± 8	84 ± 7	236 ± 61	
Cryostat of ANG2	91 ± 4	10 ± 3	78 ± 22	M C simulation
Cryostat of ANG3	105 ± 5	84 ± 5	927 ± 46	Ch.Doerr,Uni HD
Cryostat of ANG4	115 ± 3	87 ± 4	199 ± 4	2002
Cryostat of ANG5	100 ± 4	26 ± 4	1632 ± 49	
measured by GeMPI*	≤ 16	≤ 12	≤ 110	surface contamination

* 127 kg

not enough space at LNGS for full shielding by liquid N_2/Ar

GERDA

GERmanium Detector Array for the search of neutrinoless double beta decay of ⁷⁶Ge

Collaboration:

INFN LNGS, Assergi, Italy JINR Dubna, Russia IKTP Univ, Dresden, Germany MPIK, Heidelberg, Germany Univ. Köln, Germany Jagiellonian University, Krakow, Poland Univ. di Milano Bicocca e INFN, Milano, Italy

INR, Moscow, Russia TEP Physics, Moscow, Russia Kurchatov Institute, Moscow, Russia MPI Physik, München, Germany Univ. di Padova e INFN, Padova, Italy Univ. Tübingen, Germany Univ. Zürich, Switzerland

low radioactivity stainless steel (228 Th \leq 5 mBq/kg)

Spokesperson: Stefan Schönert, MPIK Heidelberg

Stainless steel measured for GERDA cryo tank

Stee	457.1	Activity [mBq/kg]								
sam	nple		prin	nordial r	adionucl	ides	les man made			
heat	plate	²²⁶ Ra	^{234m} Pa	²³⁵ U	²²⁸ Th	²²⁸ Ra	⁴⁰ K	¹³⁷ Cs	⁶⁰ Co	
kg #	hours									
495243	362891-1	≤ 1 .3	≤ 94	≤ 2.6	≤ 0.2	≤ 2.6	≤ 2.8	0.77 ± 0.43	45.0 ± 2.1	
54.75 G	1 76.6									
494257	347128-2	≤ 0.24	≤ 12	≤ 0.63	≤ 0.11	≤ 0.86	≤ 0.93	≤ 0.16	14.0 ± 0.1	
54.74 G	2 470									
494257	347106-2	≤ 0.35	≤ 38	≤ 1.5	≤ 0.27	≤ 1.1	≤ 1.1	≤ 0.39	13.0 ± 0.6	
61,33 Ge	6 115.1									
T506095	50609522	≤ 0.74	≤ 45	≤ 1.5	≤ 0.41	≤ 1.0	≤ 1.1	≤ 0.26	13.8 ± 0.7	THE STOLEN
57.6 G	3 74.5									
255455	68558	≤ 13	≤ 4 1	≤1.9	5.1 ± 0.5	≤ 3.0	≤ 1.7	≤ 0.36	20 ± 1	A M
52.86 <i>G</i>	4 88.7									
254533	56754	1.0 ± 0.6	54 ± 16	2.5 ± 1.5	1.5 ± 0.2	1.0 ± 0.5	≤ 0.81	≤ 0.1	18.3 ± 0.7	6
53.15 GS	5 230.4									
255772	71459	3.9 ± 1.6	≤ 56	≤ 3.9	5.2 ± 0.5	1.9 ± 1.0	≤ 1.7	≤ 0.6	42.1 ± 1.9	
55,0 <i>G</i>	7 144.5									

A Lin

Cosmic ray induced isotopes in stainless steel (FeCrNiMo) measured for GERDA

Steel 457.1		a	ctivity	[mBq/kg]		
sample		c	osmogenic	radionuclid			
	⁷ Be	⁵⁴ Mn	⁵⁸ Co	⁵⁶ Co	⁴⁶ Sc	⁴⁸ V	
$T_{1/2} \rightarrow$	53.3 d	312.2 d	70.9 d	77.3 d	83.8 d	16.0 d	
Production \rightarrow	spallation	⁵⁶ Fe(n,p2n)	⁶⁰ Ni(n,p2n)	⁵⁸ Ni(n,p2n)	⁴⁸ Ti(n,p2n)	⁵⁰ Cr(n,p2n)	
channels		(µ⁻,v2n)	(µ⁻,v2n)	(µ⁻,v2n)	(µ⁻,v2n)	(µ⁻,v2n)	
			⁵⁸ Ni(n,p)		spallation	spallation	
					on Fe	on Fe	
G 1	≤ 3.9	1.3±0.4	0.67±0.34	≤ 0.32	≤ 0.35	0.30±0.11	innadiation time
							infaulation time
G2	≤ 3.0	1.5±0.1	0.99±0.12	0.17±0.06	0.24 <u>±</u> 0.06	0.36±0.07	← aff sed developer ground than
							exposed for 314 d at I NGS
G3	≤ 5.7	0.92±0.24	0.56±0.23	≤ 0.62	≤ 0.54	0.27±0.11	
	<u> </u>		0.74.0.0/	10.74	10/7	0.04.0.40	-surface (≈ 90/ g/cm2)
G 4	9.6±2.9	2.0±0.3	0./1±0.26	≤ 0./1	≤ 0.67	0.31±0.13	→~ 600 d
	40.17	17.02	0 (0, 0 1 (0.28.0.10	0.47.014	0.22.0.00	~ 000 u
G 5	4.8±1.7	1.7±0.2	0.09±0.10	0.28±0.10	0.47 ± 0.14	0.22 <u>±</u> 0.09	
<u> </u>	124,25	14.02	0.50,0.20	< 0.42	< 0.21	0.40,0.12	all others are
60	(13.0±2.5)	1.4±0.2	0.09±0.20	≥ 0.42	≥ 0.31	0.40±0.12	→ ¿tim B a mehs wed on Heidelberg 63 days earlier
67	< 5.9	1.6+0.3	0 54+0 27	< 0.6	0.61+0.26	0 39+0 13	
97	<u> </u>	1.0±0.5	0.04 <u>-</u> 0.27		0.0110.20	0.3710.13	sasemataproduced in cito,
P. Pata	45.07	27.03	0 6 0 00	0 24.0 04	0 22.0 04	0 1.0 01	but contamination from
$r. \kappa u re sea level [(103 sec)-1 ko-1]$	4.5±0.7	2.7±0.3	0.0±0.09	<i>U.24±U.0</i> 4	<i>0.22±0.0</i> 4	<i>U.4±U.U</i> 4	
[(10 300)		"					TIITramonaust (up to 40
	⁵¹ Cr: <i>2.0±</i>	0.72 52 Mn	90.35 ± 0.2	25 ⁹⁹⁴⁵ 6Ni: (0.17 ± 0.05	[mBq/kg]	kBa/ka Wershofen PTB)
	60	Co hefore:	11 1+0 5	after 11	5+0 6 [Ray	'kal	

GERDA phase I and II

Phase I: use 5 Heidelberg-Moscow and 3 IGEX detectors estimated background: 0.01 Counts/(kg keV y) @ 2040 *keV* exposure: 15 kg years aim: is to confirm/refute claim

Phase II: plus 20 kg enriched material

envisioned Background: 0.001 Counts/(kg keV y) @ 2040 keV

exposure: 100 kg y

```
discovery potential to T_{1/2} \approx 5 \cdot 10^{25} yrs,
```

limit setting to $1.5 \cdot 10^{26}$ yrs.

requires better suppression of cosmogenic ⁶⁰Co and ⁶⁸Ge in Ge crystals

discrimination of Multi Site Events (MSE) (e.g. Compton bgd.) from Single Site Events (SSE) (e.g. $0\nu\beta\beta$) by:

a) segmentation of germanium detectors

b) pulse shape analysis with BEGe-like (point contact)germanium detectors

c) detection of scintillation light of liquid argon sourrounding the crystal (beeing studied with LARGE)

Conclusion and future developments

- highly sensitive Ra/Rn assay by Rn counting with miniature proportional counters
 well suited for surface contamination studies (²²⁶Ra typical contamination indicator)
 applicable for assay of radioactive noble gases in liquid rare gas experiments
- Ge spectroscopy very powerful screening tool, also to control secular equilibrium
- hopeful development in 'clean' stainless steel production by electric arc melting future needs:
- study behavior of ²¹⁰Po, develop screening methods (liquid scintillation ?)
- systematic study of surface contamination
- upgrade Ge spectroscopy

