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Abstract

Artificial neural networks may in some cases present a new important approach to information processing. We have
investigated whether the accuracy offered by this technique is good enough to extract physical information from the
signals coming from an unsegmented large volume liquid scintillator detector.

In particular, we wanted to understand whether this method is well suited to be implemented in the Borexino detector
for monitoring or for on-line event selection purposes. The results obtained on data from a smaller scale Borexino-like
detector, implementing a neural network algorithm on a sequential scalar computer, have been compared to those of
a standard best-fit procedure. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The first phase of the Borexino experiment [1] is
the Counting Test Facility, CTF [2], that has been
set up in the Hall C of the LNGS. It consists of 5 m3

of liquid scintillator shielded by 1000 tons of high
purity water and viewed by 100 photomultipliers
equipped with truncated string cones for light
collection. The related read-out electronics is com-
posed of 64 ADC and TDC channels: the relevant
pieces of information are the number of collected

photoelectrons, giving the total energy released in
the detector, and the photon arrival time at each
photomultiplier that allows the spatial reconstruc-
tion of the event, fundamental in the Borexino
experiment to define the fiducial volume. The spa-
tial reconstruction is performed by a standard like-
lihood method working with the relative arrival
times of the hit photomultipliers?

A likelihood function, built in the multi-
dimensional space of the arrival times and spatial
coordinates, gives the probability that the
arrival time pattern is generated by an event in
the given position. For each event this method
searches for the spatial point that maximizes this
probability.
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This is a statistical approach to the spatial recon-
struction problem, and finds the result with the
highest probability to be correct, but has the disad-
vantage that it requires a long computational time.
In this framework, the spatial reconstruction can be
seen as a mapping between a set of time inputs and
the event coordinates, a typical pattern recognition
problem. The neural network approach is well
suited for this problem and its fast computational
time, a weakness of the standard method, pushed us
to investigate the possibility to use this technique.

In this paper we present a brief study of the
essential features of an approach based on the
simulation of a neural network on a sequential
scalar computer. The paper starts with a brief intro-
duction to the neural network approach and
a check that the CTF spatial reconstruction prob-
lem can be solved with this technique. We then
present some peculiarities of the implementation of
our net for CTF and finally we compare the net
performance with the standard likelihood method
on source data taken in several CTF runs.

2. The neural network approach

An artificial neural network can be thought of as
a sort of “black box” processing system; its opera-
tional capabilities allow the reproduction of an
application XP½ between two sets of vectors. In
our case the input set is the space of possible arrival
time configurations while the output is the three-
dimensional physical space. In a neural network
the basic units are called neurons. A neuron has
several input and output connections and the
weighted sum of all the signals received by a neuron
generates its response through an activation func-
tion:

y"gA+
j

w
j
x
j
#0B,

where x
j
and y are the input and output values, 0 is

a thresholding potential and w
j
are the weights. The

activation function g is very often chosen as a sig-
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The constant ¹ sets the gain of the activation
function. With this simple neuron, various types of
networks and architectures can be built; one of the
most widely used and well suited for our applica-
tion is the feed-forward, multilayer neural network
with supervised training. In this configuration the
neurons are grouped in layers: an input layer,
where data are presented, hidden layer(s) and an
output layer where results are given. The output of
each neuron is connected to the input of the neur-
ons of the following layer; in our configuration
there are three neurons in the output layer that give
us the x,y,z coordinates of the reconstructed event
position.

In principle, one hidden layer is sufficient to fit
any continuous function [3] but it may well be
more practical to interlayer the network with more
than one hidden layer.

Once the weights are set in the training process,
the network architecture is completely determined.
There is a variety of training algorithms: in the
present case we have followed the method known
as back-propagation. A set of Monte Carlo simu-
lated input data is presented to the net with the
corresponding output; for each input pattern the
energy function is evaluated:
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where O
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is the computed network output for
a given pattern and O

MC
is the Monte Carlo gener-

ated output for the same pattern. The energy func-
tion is computed by the net and its value is
propagated backwards to modify each weight in
order to be minimized. The updating equation is
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and g is the learning parameter, representing the
step length on the error surface that is defined by
the value of the error as a function of all weights.
The last term is a momentum term which stabilizes
the training by avoiding oscillations. The strength
of the damping is set by the parameter p which
should be between 0 and 1. The updating of the
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weights can be done for every presented pattern, by
grouping patterns together or just once after the
complete training set, called one epoch. The smaller
the number of patterns the energy function is aver-
aged over, the faster, but more unstable too, the
training process can be.

The training starts with randomly selected
weights and relatively high values of the learning
rate and momentum; the factors are changed dur-
ing the training over several thousands of epochs,
until the error function reaches a minimum on
a validation set, a Monte Carlo generated set differ-
ent from the learning set.

It is important that the input variables are of the
same order of magnitude and range in order to
obtain stable convergence towards a minimum: the
simplest method to obtain this is to renormalize the
input variables to an interval [0,1]. Furthermore, in
order to avoid local minima, it is recommended to
pick the input event at random from the simulated
set and, to prevent overfitting, to have the number
of simulated learning patterns about one order of
magnitude higher than the number of weights in
the net. Overfitting is the problem that arises when
there are so many weights in the net with respect to
the number of learning patterns that the net be-
comes very specialized in fitting “too well” only
those patterns, losing in such a way its generaliz-
ation capability.

3. Neural network for CTF

3.1. Are NN good for CTF?

Before approaching the reconstruction of “real
data” taken during CTF runs, we wanted to make
sure that the NN method is well suited for the CTF
spatial reconstruction problem and to understand
what performance we could expect. We then built
a feed-forward NN keeping in mind what has been
said in the previous paragraph, and applied it to
CTF Monte Carlo generated data.

A set of 20 000 point-like, 1 MeV Monte Carlo
events was generated uniformly in the sensitive
region of the detector: data from each event are the
generated position and the photon arrival time at
each photomultiplier.

We decided on a three-layer NN (36-36-3
neurons per layer) with a sigmoidal activation func-
tion having the output range in [0,1]: we then
needed to fix the space where we allowed the NN to
reconstruct. This implies some limitations that
will be shown and resolved in the optimizations of
the NN for the CTF data presented in the next
paragraph.

The choice of 36 inputs was taken in view of the
final application: in the real detector there are 36
“double” channels, in which two photomultiplier
analog outputs are summed, and 28 “single” chan-
nels. We coupled each single photomultiplier with
the closest pair to have a reasonable and limited
learning time that would allow us to try different
solutions (the four pairs on the top of the detector
and the four pairs on the bottom do not have any
close single photomultiplier).

To fulfill the input normalization requirement,
we applied a time cut common to all the events and
the training was performed using the back-propa-
gation algorithm. We started the learning session
by first grouping one tenth of the training patterns;
after reaching a good degree of convergence, we
performed the updating only after presenting the
complete training set. We stopped the training
when the error function behaviour became flat, that
means the net was no longer learning, as shown in
Fig. 1.

The Fortran package JetNet 3.4 [4] was used for
the NN computations and a graphical interface was
developed that allowed us to interactively monitor
and modify the relevant NN parameters [5].

The results of the NN algorithm are shown in
Fig. 2: the difference between the reconstructed and
the generated coordinates is plotted. It can be no-
ticed that the resolution on the z coordinate is
different from the resolution on x and y: this is true
also for the likelihood method reconstruction code
and comes from the cylindrical (and not spherical)
symmetry given to the photomultiplier distribu-
tion.

We remind that the purpose of this Monte Carlo
study was to verify the possibility to use NN for the
spatial reconstruction in CTF and not to build the
best possible net to reconstruct Monte Carlo data:
in this frame we conclude that the answer is defi-
nitely encouraging.
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Fig. 1. Training error as a function of epoch number.

Fig. 2. MC events reconstructed by a 36 input, three-layer NN with a sigmoidal activation function.
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3.2. NN for the CTF detector

The next step was to preprocess the data, select-
ing and organizing the significant information, and
to optimize the NN for the “real” reconstruction.

3.2.1. Time cut
Due to the timing properties of the liquid scintil-

lator used in CTF, part of the emitted light is
absorbed and re-emitted by the scintillator itself
before reaching the photomultipliers. This has the
effect to delay the arrival time of the photons that
undergo this process and, moreover, since the re-
emitted light is isotropic, the information valid for
the spatial reconstruction is completely lost. There-
fore, a time cut selecting the prompt information
improves the reconstruction.

A constant time cut common to all the events
would not be appropriate because the arrival time
spread of the photons is event position dependent.
A dynamical time cut has been defined:

t
#65
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t
,

where tM is the mean value of the event arrival time
distribution and p

t
is the width of the same distribu-

tion. The normalization value was chosen so that
most of the inputs are in the range [0,1], but not all;
we could have chosen the highest possible time
value, thus strongly compressing most of the in-
puts, but this would fail to exploit the full NN input
dynamic range.

A drawback of this time cut is that the conver-
gence towards the minimum is more critical: we
have to be careful during the training process,
monitoring and modifying the learning parameters
via the graphical interface developed.

3.2.2. Linear activation function
Using the sigmoidal activation function with the

output range [0,1], the space where an event can be
localized has to be selected; for the Monte Carlo
results we have shown, we allowed the reconstruc-
ted event to be in a 2 m radius sphere with the
center common with the Inner Vessel (I.V.). The
Monte Carlo generated events were in a 1 m sphere,
in the I.V.; by reconstructing in the same limited
region, due to the finite resolution of the detector,
the events would be statistically pushed inside. Fur-

thermore, limiting in advance the space where events
can be localized, would force any spurious arrival
time combination to be inside the predefined region.

To overcome this limitation we implemented
a linear activation function: the outputs are com-
pletely free running and predefinition of the pos-
sible space is no longer required.

We noticed that much more care needs to be
taken during the training session since it is more
critical now that the energy function can diverge.
The resolution performance is equivalent to that
obtained with the sigmoidal function and a slight
improvement is noticed in the computational time.
The results will be shown in the next sub-section
after the implementation of a further simplification.

3.2.3. Two-layer NN
As previously stated [3], one hidden layer is

enough to fit any continuous function so perhaps
the CTF spatial reconstruction problem can be
solved, or well approximated, with a two-layer NN.

In Fig. 3 Monte Carlo events reconstructed by
a two-layer NN with a linear activation function
are shown: comparing the plots with Fig. 2, no
degradation in the resolution is evident. On the
other hand, with this simpler NN configuration, the
training process is much faster having about 100
weights to be optimized instead of about 3600.
Advantages are evident both in the learning phase,
allowing several tests to be performed in the same
day, and in the computational time (a table sum-
marizing the time performance will be shown later).

A partial justification of this simplification comes
from the resolution of a similar two-dimensional
problem. Consider a “light source” in the plane and
three photo-multipliers of known positions. If the
distances of the light source, or the arrival time of
the photons, from the photomultipliers are given,
then it is possible to show that the coordinates of
the light source can be written as a linear combina-
tion of the given distances with weights indepen-
dent of the light source position. This solution has
the same form given by a two-layer NN, with a lin-
ear activation function.

To conclude this part where the NN for the data
reconstruction has been defined, we have to take
into consideration that unfortunately, at the time
the source data were collected, the CTF had been
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Fig. 3. MC events reconstructed by a 36 input, two-layer NN with a linear activation function.

Fig. 4. MC events reconstructed by a NN optimized on a real working condition of the detector at the time the source data were
collected.

running for a while and the detector itself had been
damaged by some unexpected accidents. So the
results we show could only exploit the information
coming from about half of the photomultipliers,
50% of the installed ones being dead.

The Monte Carlo was run in such a damaged
condition. The NN was adjusted to cope with this
degraded situation where several channels and even
several inputs of the original 36 input NN were
dead. The best condition was found giving the NN
all the electronic channels that were alive as inde-
pendent inputs; the final configuration has then 41
inputs in the first layer.

These new Monte Carlo events have also been
generated with an 820KeV energy to be in the same

condition as the source data that will be presented
in the next section; the NN reconstruction is shown
in Fig. 4. The worsening of the spatial resolution is
evident. Furthermore, due to the scattered position
of the dead photomultipliers, the symmetry of the
detector was not preserved.

4. Results

The results given in this section were obtained by
reconstructing source runs where 222Rn was in-
serted in a few centimeter sphere quartz vial filled
with the same scintillator used in CTF, acting as
a point-like light emission. The source was moved
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Fig. 6. A source position reconstructed by the NN.

Fig. 5. Difference between the source mean values reconstructed by the NN and by the likelihood-method code.

around in the CTF scintillator: located in the center
of the detector, close to the nylon surface of the I.V.
and in several points spread out through the whole
sensitive volume, for a total of about 30 different
positions. The average number of hit channels was
about 80% of the working ones, depending on the
source position.

The 222Rn decay chain has a distinctive signa-
ture in the coincidence 214Bi—214Po: first a b decay
with end point at 3.23MeV, followed by
a 7.688MeV a decay with half life 164ls. Due to
the a quenching measured in our scintillator [6] the
7.688MeV 214Po decay has an equivalent light
production to a b energy release of 820KeV. Due
to the strong tag of the energy requirement of the
a decay together with the time correlation of a pre-

vious b decay, it is very easy and efficient to dis-
criminate this event from the background.

The NN performance was tested by reconstruct-
ing the 820KeV energy equivalent a decay. Results
are shown in Fig. 5, where the mean values of the
source positions reconstructed by the NN are com-
pared with the positions reconstructed by the stan-
dard likelihood method algorithm. The mean
values of the two methods differ by only a few
centimeters, without any significant systematic
shift.

The NN resolution in reconstructing each single
source event is of the same order as the NN resolu-
tion expected from the Monte Carlo simulations, as
shown for one particular source in Fig. 6 and sum-
marized for the whole source set in Fig. 7.
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Fig. 7. Resolution in reconstructing different source positions with NN.

Table 1
Time performance

I/O (ms/eV) Reconstruction
time (ms/eV)

NN 2 0.21
Likelihood 2 180

It can be noticed that the resolution averaged
over the source set is about 18 cm, not far from the
standard likelihood method algorithm resolution
that is about 14 cm.

Finally, the time performance is summarized in
Table 1 for both the NN implementation and the
standard likelihood method algorithm. This time
performance is evaluated on a 500Mhz Digital Alpha
CPU. It can be noted that the I/O time, reading the
data from disk, is now by far the dominant contribu-
tion in the NN approach that, for the reconstruction,
is almost three orders of magnitude faster than the
standard likelihood method code. For a monitoring
or on-line application purpose, the I/O time will not
be such a limitation and it will be possible to fully
exploit the time performance of the NN.

5. Conclusions

Given the good compromise shown by NN on
CTF data between spatial resolution and process-
ing time, we think that this method is well suited to

be implemented for the Borexino detector for
monitoring or on-line event selection purposes.

This analysis has been performed on 820KeV
energy equivalent events. It should be extended to
the whole energy spectrum or at least to the range
of l interest in Borexino that is from 250 to
800KeV [1]. Due to the damaged conditions of the
CTF detector at the time the source data were
collected, we do not think it is worthwhile to push
further this test. It should also be noted that, gross-
ly speaking, having half of the photomultipliers
dead it is almost like working at half the source
energy and that this is not far from the lower end of
the energy interval of interest. This gives us confi-
dence that the spatial reconstruction is feasible with
NN in the whole energy spectrum of interest, with
good resolution and time performance.
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